Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Stem Cell Res Ther ; 14(1): 234, 2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37667335

RESUMEN

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and irreversible lung disease characterized by pulmonary fibrosis and lung dysfunction, ultimately leading to respiratory failure. Many preclinical studies have investigated the therapeutic potential of stem cell-derived exosomes in this disease, particularly mesenchymal stem cell-derived exosomes. However, the effects of embryonic stem cell-derived exosomes in IPF remain unclear. METHODS: We established a bleomycin (BLM)-induced pulmonary fibrosis mice model and administered human embryonic stem cell exosomes (hESC-exo) from the first day after BLM treatment. The effects of hESC-exo were assessed by pulmonary function tests, biochemical analysis, histochemistry, quantitative real-time polymerase chain reaction (qPCR), and western blot (WB). RNA-seq was used to screen for the potential therapeutic targets of hESC-exo in fibrotic lungs; the identified signaling axis was characterized using a luciferase assay, qPCR, and WB. RESULTS: Results indicated hESC-exo administration notably alleviated inflammation, removed deposited collagen, and rescued alveolar architecture in the lungs of BLM-induced mice. In vivo and in vitro tests revealed that hESC-exo-derived miR-17-5p directly bound thrombospondin-2 (Thbs2) to regulate inflammation and fibrosis; thus, hESC-exo protected against BLM toxicity in the lungs via the miR-17-5p/Thbs2 axis. CONCLUSION: These results suggest a promising new treatment for fibrosis-associated diseases.


Asunto(s)
Células Madre Embrionarias Humanas , Fibrosis Pulmonar Idiopática , MicroARNs , Humanos , Animales , Ratones , Trombospondinas , MicroARNs/genética , Inflamación , Bleomicina/toxicidad
2.
Ann Transl Med ; 10(20): 1092, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36388801

RESUMEN

Background: Aging is a natural and multi-factorial phenomenon associated with multiple human pathologies. Mesenchymal stem cells (MSCs) hold great promise in clinical fields of medicine including tissue repair, cardiovascular disease, and brain ischemic injury. The purpose of this study was to explore the roles of MSCs in improving the condition of aging cells, repairing aging tissues and organs, and extending the life span of elderly mice. Methods: This study was carried out both in vitro and in vivo. We used MSCs to intervene with IMR-90 senescent cells induced by D-galactose and aged C57BL/6 mice. Results: After 48 hours of co-culturing the aged cells with MSCs, the up-regulated expression of inflammatory factor, interleukin 6 (IL6), and the down-regulated expression of several growth factors, such as transforming growth factor (TGFß1) and growth differentiation factor (GDF11), in D-galactose induced senescent cells were reversed. Moreover, compared with aged cells, the number of mitochondria and the telomere length were increased with MSC treatment. Similarly, in aged mice, the symptoms related to aging were improved after MSC treatment: the mouse hair became shiny and dense, and the symptoms of bladder overactivity were relieved. Hematoxylin and eosin (H&E) and Masson's trichrome staining showed that the histopathological changes in skin, bladder, liver, and lung were apparently improved. Conclusions: Treatment with MSCs effectively improves aging-related phenotypes and plays a beneficial role in improving aging and aging-related diseases.

3.
Stem Cell Res Ther ; 13(1): 449, 2022 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-36064647

RESUMEN

BACKGROUND: Increasing studies have reported the therapeutic effect of mesenchymal stem cell (MSC)-derived exosomes by which protein and miRNA are clearly characterized. However, the proteomics and miRNA profiles of exosomes derived from human embryonic stem cells (hESCs) and human-induced pluripotent stem cells (hiPSCs) remain unclear. METHODS: In this study, we isolated exosomes from hESCs, hiPSCs, and human umbilical cord mesenchymal stem cells (hUC-MSCs) via classic ultracentrifugation and a 0.22-µm filter, followed by the conservative identification. Tandem mass tag labeling and label-free relative peptide quantification together defined their proteomics. High-throughput sequencing was performed to determine miRNA profiles. Then, we conducted a bioinformatics analysis to identify the dominant biological processes and pathways modulated by exosome cargos. Finally, the western blot and RT-qPCR were performed to detect the actual loads of proteins and miRNAs in three types of exosomes. RESULTS: Based on our study, the cargos from three types of exosomes contribute to sophisticated biological processes. In comparison, hESC exosomes (hESC-Exos) were superior in regulating development, metabolism, and anti-aging, and hiPSC exosomes (hiPSC-Exos) had similar biological functions as hESC-Exos, whereas hUC-MSCs exosomes (hUC-MSC-Exos) contributed more to immune regulation. CONCLUSIONS: The data presented in our study help define the protein and miRNA landscapes of three exosomes, predict their biological functions via systematic and comprehensive network analysis at the system level, and reveal their respective potential applications in different fields so as to optimize exosome selection in preclinical and clinical trials.


Asunto(s)
Exosomas , Células Madre Pluripotentes Inducidas , Células Madre Mesenquimatosas , MicroARNs , Exosomas/genética , Exosomas/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Mesenquimatosas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Proteómica , Cordón Umbilical
4.
Cell Death Dis ; 13(2): 120, 2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35136022

RESUMEN

The mammalian heart is capable of achieving perfect regeneration following cardiac injury through sustained cardiomyocyte proliferation during the early period after birth. However, this regenerative capacity is lost by postnatal day 7 and throughout adulthood. CUGBP1 is critical for normal cardiac development but its role in heart regeneration remains unclear. Cardiac CUGBP1 levels are high in the early postnatal period and soon downregulate to adult levels within 1 week following birth in mice. The simultaneously diminished regenerative capacity and CUGBP1 levels by postnatal day lead us to hypothesize that CUGBP1 may be beneficial in heart regeneration. In this study, the function of CUGBP1 in heart regeneration was tested by a heart apex resection mouse model. We demonstrate that cardiac inactivation of CUGBP1 impairs neonatal heart regeneration at P1, in turn, replenishment of CUGBP1 levels prolong regenerative potential at P8 and P14. Furthermore, our results imply that the Wnt/ß-catenin signaling and GATA4 involve in the CUGBP1 modulated neonatal heart regeneration. Altogether, our findings support CUGBP1 as a key factor promoting post-injury heart regeneration and provide a potential therapeutic method for heart disease.


Asunto(s)
Lesiones Cardíacas , Miocitos Cardíacos , Animales , Animales Recién Nacidos , Proliferación Celular , Corazón/fisiología , Lesiones Cardíacas/genética , Mamíferos , Ratones , Miocitos Cardíacos/fisiología
5.
Nat Commun ; 11(1): 4857, 2020 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-32978402

RESUMEN

Characterization of the dynamic conformational changes in membrane protein signaling complexes by nuclear magnetic resonance (NMR) spectroscopy remains challenging. Here we report the site-specific incorporation of 4-trimethylsilyl phenylalanine (TMSiPhe) into proteins, through genetic code expansion. Crystallographic analysis revealed structural changes that reshaped the TMSiPhe-specific amino-acyl tRNA synthetase active site to selectively accommodate the trimethylsilyl (TMSi) group. The unique up-field 1H-NMR chemical shift and the highly efficient incorporation of TMSiPhe enabled the characterization of multiple conformational states of a phospho-ß2 adrenergic receptor/ß-arrestin-1(ß-arr1) membrane protein signaling complex, using only 5 µM protein and 20 min of spectrum accumulation time. We further showed that extracellular ligands induced conformational changes located in the polar core or ERK interaction site of ß-arr1 via direct receptor transmembrane core interactions. These observations provided direct delineation and key mechanism insights that multiple receptor ligands were able to induce distinct functionally relevant conformational changes of arrestin.


Asunto(s)
Arrestina/química , Arrestina/genética , Arrestina/metabolismo , Ligandos , Espectroscopía de Protones por Resonancia Magnética/métodos , Sitios de Unión , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Fenilalanina , Unión Proteica , Conformación Proteica , Receptores Adrenérgicos beta 2/metabolismo , Transducción de Señal , beta-Arrestina 1/química , beta-Arrestina 1/genética , beta-Arrestina 1/metabolismo
6.
Waste Manag ; 102: 131-138, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-31677520

RESUMEN

A novel and efficient approach for stepwise recycling of valuable metals from Ni-rich cathode material is developed. First, the spent cathode materials are leached by H2SO4 + H2O2 solution. The leaching efficiencies of lithium, nickel, manganese and cobalt reach almost 100%, 100%, 94% and 100%, respectively, under the conditions of 2 M sulfuric acid, 0.97 M hydrogen peroxide, 10 ml·g-1 liquid-solid ratio, 30 min and 80 °C. Then, manganese and cobalt are co-extracted from the leaching liquor with PC88A, while almost 99% nickel and 100% lithium remain in the raffinate followed by being separated from each other by solvent extraction with neodecanoic acid (Versatic 10). The results show that 98% manganese and over 90% cobalt are co-extracted at pH = 5, 30 vol% PC88A and volume ratio of oil to water (O:A) = 2:1, while 100% nickel is separated from lithium under the optimum extraction conditions of initial pH = 4, O:A = 1:3 and 30 vol% Versatic 10. Finally, cobalt and manganese in the strip liquor of co-extraction are separated by selective precipitation method. Over 90% manganese is separated from cobalt under the conditions of pH = 0.5, 0.076 M KMnO4, 80 °C and 60 min.


Asunto(s)
Peróxido de Hidrógeno , Litio , Cobalto , Suministros de Energía Eléctrica , Electrodos , Metales , Reciclaje
7.
Waste Manag ; 85: 529-537, 2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30803608

RESUMEN

Recycling lithium and graphite from spent lithium-ion battery plays a significant role in mitigation of lithium resources shortage, comprehensive utilization of spent anode graphite and environmental protection. In this study, spent graphite was firstly collected by a two-stage calcination. Secondly, under the optimal conditions of 1.5 M HCI, 60 min and solid-liquid ratio (S/L) of 100 g·L-1, the collected graphite suffers simple acid leaching to make almost 100% lithium, copper and aluminum in it into leach liquor. Thirdly, 99.9% aluminum and 99.9% copper were removed from leach liquor by adjusting pH first to 7 and then to 9, and thenthe lithium was recovered by adding sodium carbonate in leach liquor to form lithium carbonate with high purity (>99%). The regenerated graphite is found to have high initial specific capacity at the rate of 37.2 mA·g-1 (591 mAh·g-1), 74.4 mA·g-1 (510 mAh·g-1) and 186 mA·g-1 (335 mAh·g-1), and with the high retention ratio of 97.9% after 100 cycles, it also displays excellent cycle performance at high rate of 372 mA·g-1. By this process, copper and lithium can be recovered and graphite can be regenerated, serving as a sustainable approach for the comprehensive utilization of anode material from spent lithium-ion battery.


Asunto(s)
Grafito , Litio , Suministros de Energía Eléctrica , Electrodos , Reciclaje
8.
Angew Chem Int Ed Engl ; 55(18): 5545-9, 2016 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-27005748

RESUMEN

A novel product-derived bimetallic palladium complex catalyzes a sulfonylazide-transfer reaction with the σ-donor/π-acceptor ligand CO, and is advantageous given its broad substrate scope, high efficiency, and mild reaction conditions (atmospheric pressure of CO at room temperature). This methodology provides a new approach to sulfonylureas, which are present in both pharmaceuticals and agrochemicals. The synthesis of Glibenclamide on a gram scale further revealed the practical utility of this procedure. Mechanistically, the generation of a bridged bimetallic palladium species derived from the product sulfonylurea is disclosed as the crucial step for this catalytic cycle.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...